Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 86(2): 810-824, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36574041

RESUMO

It is widely accepted that in many aquatic ecosystems bacterioplankton is dependent on and regulated by organic carbon supplied by phytoplankton, leading to coupled algae-bacteria relationship. In this study, an in-depth analysis of this relationship has been carried out by combining two approaches: (i) a correlation analyses between heterotrophic bacterial production (BP) vs. primary production (PP) or algal excretion of organic carbon (EOC), (ii) the balance between bacterial carbon demands (BCD) and the supply of C as EOC, measured as BCD:EOC ratio. During the study period (2013-2016), the algae-bacteria relationship was constantly changing from a coupling in 2013, uncoupling in 2014 and 2015, and an incipient return to coupling (in 2016). Our results show that top-down control (bacterivory) by algal mixotrophy acts as a decoupling force since it provides a fresh C source different to algal EOC to satisfy bacterial carbon demands. Notably, a relationship between the BCD:EOC ratio and the ecosystem metabolic balance (Primary production (PP): respiration (R)) was found, suggesting that PP:R may be a good predictor of the algae-bacteria coupling. This analysis, including the comparison between basal and potential ecosystem metabolic balance, can be a tool to improve knowledge on the interaction between both biotics compartments, which the traditional analyses on coupling may not capture.


Assuntos
Ecossistema , Fitoplâncton , Fitoplâncton/metabolismo , Bactérias/metabolismo , Carbono/metabolismo
2.
Sci Rep ; 7(1): 6333, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740140

RESUMO

Nutrient inputs and ultraviolet radiation (UVR) are global factors affecting the structure and functioning of aquatic ecosystems, particularly clear-water ecosystems. We performed experiments in two model lakes highly exposed to UVR fluxes in order to test the effect that future increases in mineral nutrients transported by dust aerosol might exert on primary producers depending on the likelihood of atmospheric inputs. Lake La Caldera (Northern Hemisphere) has been receiving recurrent dust inputs from the Sahara Desert while lake Los Cántaros (Southern Hemisphere) has been less affected by dust aerosol. UVR × Nutrient synergistically stimulated primary production (PP), chlorophyll a (Chl a), with a smaller increase in phytoplanktonic biomass in La Caldera, but not in Los Cántaros, where nutrient addition unmasked the UVR inhibitory effect on phytoplankton. The proportional decrease of mixotrophic nanoflagellates (MNFs) after the nutrient pulse (in Los Cántaros) and the long-term decline of MNFs in La Caldera associated with the increase in aerosol-dust intrusions from the Sahara during the last 40 years suggest that a future scenario of intensified aerosol events from desert and desertified areas would not only reduce functional diversity with the decline of MNFs, but would ultimately alter the C flux towards the grazing chain in oligotrophic ecosystems.


Assuntos
Lagos/microbiologia , Nutrientes/farmacologia , Fitoplâncton/crescimento & desenvolvimento , Clorofila A/análise , Poeira , Lagos/química , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA